Advanced Genetic Algorithm based Engine Condition Monitoring

KLM Engine Services

Tim Rootliep
Royal Dutch Airlines

KLM ES Maintenance Strategy

On-Wing Condition Monitoring

- Research Goal

Future-proofing Gas Path Analysis techniques at KLM Engine Services by developing accurate on-wing component condition monitoring software for next-gen turbofan engines

- GEnx-1B
- LEAP-1A/B

Key research areas:

- Gas Path Analysis with Gas Turbine Simulation Program (GSP)
- Genetic Algorithm optimizing routine
- Multiple Operating Point Analysis (MOPA)
- Continuous Engine Operating Data (CEOD)

- Gas Path Analysis with GSP

Gas turbine simulation on a component level

GSP model

Deterioration effects analysis

- Change in component efficiency
- Change in component mass flow capacity

- Genetic Algorithm Optimization

mimics evolutionary race of a population

- Selection - individuals for next generation chosen based on fitness
- Crossover - creates new individuals
- Mutation - introduces new information by applying random changes

Advantages:

- Escape local minima in complex search space
- Find solution despite presence of noise \& bias

Population will cluster around optimal solution

- Hybrid GPA Tool

- Results

Component deterioration prediction by analysing multiple operating points

Engine performance trending

- Conclusions
- The combined GSP - Genetic Algorithm (GA) approach offers a leap forward in condition monitoring at KLM
- Accurate monitoring of engines during on-wing operation
- Increased accuracy of test cell engine diagnostics at KLM ES
- Next-gen engines with fewer gas path sensors can also be monitored accurately
- Integrating the method in the maintenance process will
- increase safety, reliability and availability
- help reduce CO2 and other emissions (cleaner engines)
- save \$
- increase customer added value
- Further work includes
- Decreasing GA computational time
- Preparing the method for routine usage on KLM aircraft and engine fleets

