

High hydrogen gas turbine retrofit to enable a low carbon reliable electricity system

Thomassen Energy

a Hanwha company

Sikke Klein s.a.klein@tudelft.nl
TU Delft, Process and Energy, Mechanical Engineering

Peter Stuttaford <u>peter.stuttaford@thomassen.psm.com</u> Thomassen Energy

March 2022

RECHARGE News Analysis In-Depth Interviews Opinion Editions

ENERGY TRANSITION

See all articles

A Alert me about Energy Transition

POWER

Aug 11, 2021 by Aaron Larson

ALSO IN THIS ISSUE

August 11, 2021

Nuclear | Aug 19, 2021

Breakthrough: Laser-Powered Fusion Experiment Nears 'Ignition'

Nuclear | Aug 19, 2021

Former Westinghouse **Executive Charged with** Conspiracy, Fraud in Connection with V.C. Summer

carbon emissions.

Decarbonizing gas turbine gets a lot of attention, and the energy symmetry drogen gas turbine gets a lot of attention, and the energy symmetry drogen gas turbine gets a lot of attention, and the energy symmetry and the ene

these a . uptions. Research and development (R&D) efforts are also are use of hydrogen and energy storage, and advance new technolog. as carbon capture and artificial intelligence, in an effort to reduce

"I think there is a clear sign right now that the world has made the choice, and the choice is clearly the zero-CO2 emission," Karim Amin, executive vice president of Generation with Siemens Energy, said as a guest on The POWER Podcast, "So, that's a given, and we are

agy transition'

ants 'will play

Describation fronty World Regions Farque Feature Splains San & Cil Fired Hydrogles

Future-proofing gas power

OLI burner - MLI surner - Diffusion surner will unabsect NOs emissions

Why Hydrogen in gas turbines?

Green hydrogen: no CO₂

Electricity supply Assume a fossil free electricity system

- Generation by Variable Renewable Energy (VRE): solar, wind on shore and wind off shore
- Balancing of supply and demand required:
 - ~ 25% of (non flexible) load

Utilization of excess Variable Renewable Energy for balancing

2020 CE Delft Study shows that H₂ in retrofit gas turbine power plant is attractive for balancing

Figuur 5 - Marginale en vaste kosten in 2030 van technieken om tekorten aan te vullen

CE Delft, Verkenning ontwikkeling CO2-vrije flexibele energietechnieken, Publicatienummer: 20.190402.041, 2020

Hydrogen is however not cheap

Green H₂: investment, annual operational hours & costs of renewable power

Simplified business cases: Green H₂: annual costs: 10% of CAPEX + average power costs (70% LHV efficiency)

Gray H₂: only commodity gas & CO₂ (81% LHV efficiency)

Gray H₂: gas & CO₂

Both cases: transport & storage excluded

Power from hydrogen is even more expensive

Current (extreme) price levels could match hydrogen based power

Challenges for hydrogen in gas turbines: flash back, emissions (NOx), dynamics and leakages

H₂ diffusivity >> thermal diffusivity

- ⇒ Increased flame speed at lean conditions
- ⇒ Stability, dynamics

Stoich. Flame temperature:

400K above
natural gas
=> High NOx with
non-premixed
combustion

Diffusivity

3-4x higher than natural

- ⇒ Leakages valves and supply
- ⇒ Preferential diffusion

Substance	Symbol	Diffusivity (cm ² /sec)
Flame gases		
(average effective value)	α	0.55
Oxygen	$D_{\mathcal{O}_2}$	0.43
Methane	D_{O_2} D_{CH_4}	0.47
Ethane	$D_{C_2H_6}$	0.30
Propane	DC ₁ H ₀	0.25
Butane	$D_{C_4H_{10}}$	0.22
Hexane	DC. HIA	0.18
Heptane	$D_{C_2H_{16}}$	0.17
Octane	$D_{C_{\mathbf{x}}\mathbf{H}_{1}\mathbf{x}}$	0.16
Decane	$D_{C_{10}H_{22}}$	0.15
C_nH_{2n+2} $(n \to \infty)$	$D_{\mu_{\alpha}, \gamma_{\alpha}}$	0
Hydrogen	$D_{\rm H_2}$	1.86
Deuterium	$D_{D_2}^{n_2}$	1.32

How does flashback look like?

Natural gas

Hydrogen

TU Delft H2 Combustion & Flashback research

TU Delft BLF model performs well on gas turbine relevant geometries and configurations

University of California, Irvine Kalantari et al. (2016)

Paul Scheerer Institute Lin, Daniele, Jahnson et al (2012)

Combustor designs under development for high hydrogen in gas turbines

Non premixed combustion => high NOx

(reduction of NOx: flame temperature/residence time)

Small diffusion flames MicroMixing -

Steam injection

Premixed combustion => low NOx

(flashback prevention)

Low Swirl

Trapped vortex

High swirl + axial injection

Sequential combustion

Axial staged combustion

Summary TU Delft H₂ combustion research

Hydrogen in power plants

- Retrofit of existing power plants: zero carbon balancing
- Hydrogen combustion much more challenging than natural gas:
 - NOx, flame speed, diffusivity,
- 100% H₂ application in gas turbine not commercially available yet => demonstrations needed

TU Delft research

- TU Delft flash back model performs well for flash back prediction and is used in burner development
- Further research required on fundamentals, active instability control and applications
- TUDelft H2seminar: https://www.youtube.com/watch?v=3pfK1ZEeGEg

High hydrogen gas turbine retrofit to enable a low carbon reliable electricity system

Thomassen Energy

a Hanwha company

Sikke Klein <u>s.a.klein@tudelft.nl</u>
TU Delft, Process and Energy, Mechanical Engineering

Peter Stuttaford <u>peter.stuttaford@thomassen.psm.com</u> Thomassen Energy

March 2022

Gas Turbine Services – Thomassen Energy / PSM

Field Service

501F: 175 - 200 MW

Global M&D w/with Digital and Service Engineering

9F: 230 - 245 MW

9E: 120 - 130 MW

7E: 75 - 85 MW

Upgraded Components

Repair

6B: 35 - 45 MW Fr5: 20 - 28 MW

Service with Innovation

Hanwha's Vision – Key Cornerstones

"Renew, Revitalize, Repurpose and Reset" and Decarbonize the Installed Gas Turbine Fleet!

Filling The Renewable Gap

Thomassen Energy

- The Gas Turbine Advantage
- Flexible fast load coverage
- Cleanest of the fossil fuels
- Ability to run on wide range of fuels, including green fuels such as hydrogen
- Excess <u>renewable energy can be harvested</u>, stored and released in gas turbines
- Existing gas turbine power plants available for retrofit with cost effective carbon free upgrades
- Ability to follow the transition to renewable World at a pace which is flexible and dependent on local & regional market drivers

Gas Turbines can meet the flexibility need ... and go green

9E Hydrogen in Commercial Operation – Key Package Elements

1. Fuel skid

2. Control System / AutoTune

DOW Netherlands – 3 x 9E machines

3. Premix Combustion system (more than 100 natural gas E-class installations, 3 with H₂)

High hydrogen Secondary fuel nozzle upgrade

4 years stable and flexible sub-9ppm NOx Operation from 0% up to 35% Hydrogen

FlameSheet™ Commercial Machine Experience

- 10 FlameSheet™ (7 FlameTOP) enabled machines in operation, 6 years of experience
- Up to 20% additional load turndown and fuel flex with sub 9ppm NOx and CO
- Hardware in excellent condition after 28,000 hours and 400 starts
- Up to 60% by vol H2 F-class firing condition in test rig; up to 40% C2+'s*

FlameSheet™ Retrofit Enhances Operational and Fuel Flexibility

Thomassen Leading a Consortium for Hydrogen Retrofits

Siemens / Mitsubishi

Common

FlameSheet™

501B/D/F/G, 701B/D/F/G

Objective:

 Develop a low emission gas turbine combustor retrofit for fuel flexible operation from 100% Natural Gas to 100% Hydrogen and any mixture thereof

Flexible fast load balancing capability

Dutch subsidy awards won:

Phase 1 awarded April 2019

Phase 2 awarded March 2021

Thomassen Energy

General Flectric

6F, 7F, 9F

1MW to 300MW with 0% to 100% Hydrogen with 1 Scalable Combustor Platform

High Hydrogen – High pressure rig testing

100% Natural Gas
OP16 Full Load
< 6 ppm NOx

100% Hydrogen OP16 Full Load < 10 ppm NOx

Operations from 100% natural gas to 100% hydrogen with dry low emissions

Carbon Free Value Chain Using Existing Gas Turbines

Hydrogen turbine, a reliable utility-scale power source, will play a crucial role in the decarbonization by utilizing hydrogen for gas turbine fuel

- Co-development of H2GT retrofit projects
- 2 Co-development of H2 production/transport/storage projects
- Co-investment on H2 production facility and hydrogen gas turbine

Solutions for the Energy Transition

Thomassen Energy

- The gas turbine advantage:
 - Rapid flexibility for power grid balancing
 - Opportunity for *clean energy storage* with hydrogen
- Gas turbine retrofits for renewables maximize existing asset value, while supporting a demand far into the future
- 3+ years of commercial experience up to 35% H2
- 40%+ H2 commercial operation in 2022
- First 0-100% hydrogen installations planned 2023/2024
- Partnership investment opportunities

High Hydrogen Combustion Retrofits for Carbon Free Power Generation and Energy Storage

Thomassen Energy

a Hanwha company

THANK YOU

DANK U WEL

BACK UP

Main advantages & challenges for hydrogen at higher volume percentages

Flash back types for premixed H2 flames relevant for gas turbine applications

Confined

 Boundary layer instability by flame adverse pressure

Swirl stabilized (standard GT)

 Flow deceleration and movement of stagnation point recirculation zone by flame adverse pressure

Unconfined ('jet' flame)

Local (temporary) flame speed > local (temporary) velocity

 H_2

- High flame speed
 - Lewis number << 1: local enrichment => flame speed û

Flame flashback in turbulent boundary layer on flat plat

Fully developed flow: e.g. long pipes or channels

Developing flow: e.g. boundary layer > complex, more relevant

Advertised maximum H₂ vol% for different gas turbine suppliers

					H2 Capability, Vol %		
		Frequency,	Power Output, MW. Natural Gas, ISO			Diffusion, unabated	
		Hz	Base Load	DLE	WLE	NOx	
	SGT5-9000HL	50	593	30			
	SGT5-8000H	50	450	30			
	SGT5-4000F	50	329	30			
Heavy	SGT5-2000E	50	187	30			
Duty	SGT6-9000HL	60	405	30			
	SGT6-8000H	60	310	30			
	SGT-5000F	60	215 - 260	30			
	SGT6-2000E	60	117	30			
	SGT-800	50 or 60	48-57	60			
	SGT-750	50 or 60	40/34 - 41	40			
	SGT-700	50 or 60	33/34	66			
Industrial	SGT-600	50 or 60	24/25	60			
	SGT-400	50 or 60	10 - 14/11 - 15	10		65	
	SGT-300	50 or 60	8/8	30			
	SGT-100	50 or 60	5/6	30		65	
	SGT-A65	50 or 60	60 - 71/58 - 62	15	100		
Aero-	SGT-A45	50 or 60	41 - 44		100		
derivative	SGT-A35	50 or 60	27 - 37/28 - 38	15	100		
	SGT-A05	50 or 60	4/6	2	15		

Siemens "Hydrogen Combustion in Siemens Gas Turbines: Sales Information v 3.0," July 2019

	Туре	Notes	TIT ⁰ C [⁰ F] or Class	Max H ₂ % (Vol)
S	Diffusion	N2 Dilution, Water/Steam Injection	1200~1400 [2192~2552]	100
MHPS	Pre-Mix (DLN)	Dry	1600 [2912]	30
Σ	Multi-Cluster	Dry/Underdevelopment - Target 2024	1650 [3002]	100
	SN	Single Nozzle (Standard)	B,E Class	90-100
쁑	MNQC	Multi-Nozzle Quiet Combustor w/ N2 or Steam		90-100
9	DLN 1	Dry	B,E Class	33
	DLN 2.6+	Dry	F,HA Class	15
	DLN 2.6e	Micromixer	HA Class	50
S	DLE	Dry	E Class	30
Siemens	DLE	Dry	F Class	30
- E	DLE	Dry	H Class	30
S	DLE	Dry	HL Class	30
0	Sequential	GT26	F Class	30
읃	Sequential	GT36	H Class	50
Ansaldo	ULE	Current Flamesheet [™]	F, G Class	40
A	New ULE	Flamesheet [™] Target 2023	Various	100

Emerson, B.E. et al., "Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas

Turbines Considering a Low-Carbon Future", GT2020-15714

Some References TU Delft

Questions: s.a.klein@tudelft.nl

Link website:

https://www.tudelft.nl/en/3me/about/departments/processenergy/people/gas-turbines/sikke-klein/

Some interesting MSc theses in the field of hydrogen

Boundary layer flashback prediction for low emissions full hydrogen gas turbine burners using flow simulation	Olafur Bjornsson	http://resolver.tudelft.nl/uuid:8272a27 d-692d-4721-a24c-98ffd4c52511
HYDROGEN AND OXYGEN FIRED TURBINE CYCLE OPTIMIZATION	Bram Schouten	http://resolver.tudelft.nl/uuid:e0d209d 5-1cba-4e4b-b2d8-4925b71502a5
Hydrogen flash back experiments	Filippo Faldella	http://resolver.tudelft.nl/uuid:ab0c472 e-0dd1-4086-8eeb-18ef14ee226e
Modeling of hydrogen-elektrolysis-storage-utilization chain	Nick Kimman	http://resolver.tudelft.nl/uuid:4618325 1-f22a-42b5-a994-ed353d4338c0
Numerical modelling of flame flashback in premixed tube burners with turbulent flow and high hydrogen content	Max van Put	http://resolver.tudelft.nl/uuid:84b5e88 d-72b8-4663-a597-84993aa347f7

